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ABSTRACT

For Kerr's rotating metric, it is shown that -ma
is the angular momentum of the body where m is the mass
and a is the rotation parameter. This is true even for

large m and a. The calculations are carried out using

the exterior calculus of E. Cartan.




I. TINTRODUCTION

In a previous paperl it was shown that when a is
sufficiently small so that terms of higher péwer than
the first are negligible, -ma is the angular momentum
of a slowly rotating mass shell. It was also pointed
6ut that a slowly rotating mass shell is not the only
source for the Kerr metric to first order in a; other
sources are e.g. a slowly rotating solid sphere of per-
fect fluid, many concentric shell, etc. The purpose
of this paper is to find the expression for the anqular
momentum generated by any body which has the Kerr
metric exterior to it. This is accomplishéd by inte-
grating the coﬁservation law over all space-time and
applying a generalized form of Stokes theorem to this
integral.

II. GENERALIZED STOKES THEOREM

In this section we considér the special case
where the generalized Stokes Theorem takes the form of
a divergence theorem. This divergence theorem (5) is
expressed in tensor notation. Since it is Eq. (5)
which is used in the subsequent calculations, the
rcader not familiar with exterior calculus can go di-

rectly to this equation without loss of continuity.




The generalized form of’Stokes2 is

Jdm=fm | (1)
o 90

where w is an n- form, dw(the exterior derivative of w)
is an n+l - form, and 3¢ is the n dimensional boundary
of the n+l - dimensional surface o. This form of
Stokes Theoreml includes as special cases: the funda-
mental theorem of calculus, Stokes Theorem of vector
analysis, Gauss' divergence theorem, etc. Also, this
theorem (1) is valid in curved space as well as in
flat space.

In finding the conserved angular momentum, it is

convenienit to express Stokes Theorem(l) as a gener-
alized four dimensional divergence theorem. This is

accomplished by considering the differential form w to

be a three-form dual to a one form b:z'3
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Exterior differentiation of Eq. (2) yields

de = bu. €

a 8
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a < B <y < 3§



in a four dimensional space, Substitutions of Egs.
(2) and (3) into Eq. (1) yields

)

BAwYAw = l bY ¢ maAwBAwY. (4)
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o
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a<B<y<$ u<a<f<y

The expression multiplying the divergence on the left
side of Eq. (4) is the four dimensional volume element
dV4 while the integrand on the right side can be ex-
pressed as b dou where dou denotes the 3 dimensiopal
surface element normal to b" as can be seen by inspec-

tion of Eq. (4). Hence Eg. (4) takes the form

f b“.u av, =fb"dou, (5)
Oy ‘ 90

where o, denotes the foir dimensional surface over.
which the integral is carried out. .In the same manner,
it can be shown that the above result (5) is valid for
spaces of arbitrary dimensions; it relates the integral
over an n+l dimensional space to that over its n di-

mensional boundary.




ITII. CONSERVATION LAW

The conservation law for general relativity

THV
HAY,

= 0, (6)

can be transformed to a scalar equation by contraction

with an arbitrary vectur Cu:

wv o

Integration of this quantity over all space-time yields

= uv
0 = J g, T ., 4V, (8)
g
which can be transformed into a divergence and addi-

tional term

1
_ v - v
0 = j[ guT J’V av, I . T" av,. (9)

o g

The second term on the right vanishes if Eu is a Killing
vector since the stress-energy tensor ™V is symmetric;
the first term can be transformed to an integral over

the boundary of o via Eq. (5). Thus, there results

— uv
0 = j g, ™ do. (10)
90



If the source is bounded in space, the integral
(10) reduces to the difference of the value of an inte-
gral over two different spacelike surfaces. This inte-
gral is therefore independent of the Spacelike surface,

and consequently is a conserved quantity:

= uo
J IE“T do_. (11)
Here 2 denotes the three dimensional spacelike surface
t = constant and doo is the three dimensional surface
element,
In the gpecilal case of the metric and stress-

energy tensor of reference (4) and the Killing vector

£, = [0,0,0,rwzsine], the quantity (11) becomes

the conserved angular momentuml

2

J = ¥ m(l+80)r°2\l'os

(wg =2)/V,, (12)

of a slowly rotating mass shell.

Since the stress-energy tehsor is related to the
Einstein tensor via Einstein's equations, the angular
momentum J in Eg. (11) can be expressed completely in
terms of geometrical quantities.

| If the Cartan frames w" are oriented so that the

Killing vector Eu has only the space-like components




El' Eq. (11) takes the form
81d = j El Gio

)

When Gio is expressed in terms of t! e second funda-
5

doo.' (13)

mental form,” it takes the form of a 'divergence:
i i
srg = [ &g (7 -t E] Jaog (14)

)

which becomes

813 = | (¢, [p13 - ot £]) .4 do, (1)
I
because £ 4+5 a Killing vector. The right side of
Eq. (1%) is of the same form as the left side of Eq. (5).
Application of the three dimensional form Af Eq. (5) to

-

Eq, (15) yields

8vJ = j‘ gi(pij - oidpy a6.2 (16)

]
)
where 3) denotes the 2-dimensional boundary of the
space-like surface t = const. and doj2 is a two dimen-
sional area elcment of 82. If the space=-like surfaces
are closeca (as in the Friedman universe), the inteqral

(16) vanishes since a closed space has no boundary.




The boundary of an open space does not vanish and the
angular momentum J can be found by considering only
the asymptotic metric at large distances from the
source.6 At large distances the Kerr metric and the
metriq for a slowly rotating body coincide. Hence any
source which generates the Kerr metric has the angular

momentum

J - - ma, (17)

1
N

This is true for large a as well as large m.® Also,
since many different sources generate the exterior Kerr
metric for small a, 1t is expected that there are many

sources which ‘generate the Kerr metric for iarge a.
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This result is closely related to those of R. Penrose,
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(1964) P, 565, and of J. Winicour (to be published).
The minus sign was first noticed by Boyer and Price
|Proc. Cambridge Phil. Soc. 61, 531 (1965) | Qho con-

sidercd the case of both m and a small,



8. By a coordinate transformation similar to that of

Eq. (9) of reference 1, the metric of Newman, Couch

Chinnapared, Exton, Prakash and Torrence [J. Math.

Phys. 6, 918 (1965)] can be put in the form

d92 = - dt2 + fZ-l(dt + a sinzedﬂ2
+ Z (A'ldR2 + dez) + (R2 + az) sin2 ed¢2
2
where £ = 2mr - e°,

] = r? + a? cos?e,

) R2 + a2 - f.

Substitution of this metric into Eq. (16) yields the

angular momentym J = - ma, the same as that for the

Kerr metric., Also, as for the Kerr metric, this result

is valid for large a as well as large m. The above
form of the rotating charged metric was found inde-

pendtly by Brandon Carter (private communication).
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